

Report No: 64183

Prepared for: Baston Fen Farm

Date: 01/01/2020

Field Reference: North Field Sample Depth: 75/300 mm

COMPARISON VALUES (LOI, last 3 years)				
County	3.1%			
Region	3.7%			
Country	4.2%			

SOIL ORGANIC MATTER						
LAB REF. NO	FIELD NAME	OM (LOI) %W/W	INDEX	OM (DUMAS) %	INDEX	
444657	Cadwell Covet & Long	4.8	Normal	3.1	Normal	
444665	Copse Field	3.4	Low	2.4	Low	
444666	Old Barn	3.9	Normal	3.1	Normal	
444667	Rough Field	5.1	Normal	4.4	Good	
444668	Three Trees	4.4	Normal	4.2	Normal	

There are a number of methods for analysing OM at the laboratory. The important element is to monitor the OM of soil over time. It is the net changes in OM that should be assessed, particularly making sure that OM levels do not go down. The Dumas method measures the CO2 given off from a soil sample after combusting and is a measure of soil carbon, which is a fixed proportion of organic matter content. The Dumas method is, in our opinion, the more accurate measurement of soil organic matter. LOI (Loss On Ignition) is provided here to allow comparison with previous analysis and for use with benchmarking schemes that use this method.